Electronic Design \& Research http://www.vsholding.com

500VDC, 6Amp Relay/Switch

Powerful Fast Solid State Relay

Technology for people's ideas
Designed to deliver 80 KW of power in a microsecond
Features: Utilizes only 1.4 sq. in. of PCB area and only 1.15 " tall 6A continuously or up to a 160A pulse in a miniature package High sensitivity, even at high switching frequencies 200A surge current and only 0.1 Ohms on-state resistance

Input Specifications:

Input Control Voltage (pin 4) see the order page Nominal Current
7.5 mA

Power Supply +Vcc (pin 3) see the order page for selection

Output Specifications:

Operating DC voltage range

$$
\begin{aligned}
& 0-500 \text { VDC } \\
& 6 \mathrm{~A} \mathrm{rms} \\
& 160 \mathrm{~A} \\
& 50 \mathrm{~A} \\
& 0.07 \mathrm{Ohm} \\
& 0.029 \mu \mathrm{~S} \\
& 0.180 \mu \mathrm{~S} \\
& 0.080 \mu \mathrm{~S}
\end{aligned}
$$

Maximum continuous current
Maximum surge current (IDM) - 3 mS 160 A
Continuous current (ID) 50A
Maximum on-state resistance 0.07 Ohm
Rising time $\quad 0.029 \mu \mathrm{~S}$
Delay-on time
Falling time
Delay-off time
Maximum switching frequency

* Test performed with a D3N650D3/24

General Specifications:
Ambient operating temperature range
Ambient storage temperature range
Dielectric Strength input-to-output
Mechanical Specifications:
Weight (oz)
Encapsulation Epoxies Etc.
$1.75^{\prime \prime}(44 \mathrm{~mm})$

$0.2^{\prime \prime}(5 \mathrm{~mm})$

$0.5 "(12.5 \mathrm{~mm})$
All Dimensions are in inches (millimeters).
Dimensions for SIP4 package
Terminals/solderforSIP4package
$1.15^{\prime} \mathrm{H} \times 1.75^{\prime} \mathrm{L} \times 0.8^{\prime} \mathrm{W}$ control-0.40', power- $0.6^{\prime \prime}$

PIN 1: + LOAD
PIN 2: return LOAD
PIN 3: +Vcc
PIN 4: + Control Signal PIN 5: common/GND return
0.3 " $(7.5 \mathrm{~mm})$

Pulse 500nS

Transient Protection: All loads are inductive, even ones that are not so obvious or labeled. An inductive load produces a harmful transient voltage, which is much higher than the applied voltage, when it is turned on and off. A SSR built with a MOSFET output acts as an ideal switch and can produce a seemingly "non-inductive" load, which can cause damage if not suppressed. A transient voltage suppressor, which is bi-directional for AC applied voltage and unidirectional for DC applied voltage, should be used to clamp excessive spikes.

Characteristic	Test Condition	Min	Typ.	Max.	Unit
Control voltage range	3.5	5	7	V	
Maximum Turn-On Voltage		2		V	
Maximum Turn-Off Voltage		1.6		V	
Input Current	6	7.5	20	mA	

Input Electrical Characteristics $\left(\mathbf{T a}=\mathbf{2 5}^{\mathbf{}} \mathbf{C}\right.$) for D3F200D3.5/5/10, p/n EDR82611

Power Supply, P/S
Maximum P/S current at DC -20 KHz
Maximum P/S Current at 200 KHz
$\begin{array}{lll}4.7 & 5 & 5.1\end{array}$
60 mA
200 mA

Switching time test - Load - 5 Ohm \& 1.6A

Figure 1 Turn-on delay is 402 nS

Figure 3 Rising Time is 130 nS

Figure 2 Turn-off delay is 555 nS

Figure 4 Fall Time is 153 nS

Figure 5 Switching Time Test Circuit

Electronic Design \& Research Inc. ** 7331 Intermodal Dr. ** Louisville ** KY 40258
Tel: 502-933-8660; Fax: 502-933-3422; Sales: 800-336-1337; e-mail: vsholding@vsholding.com

Ordering Instruction

A part description will be marked according to the description below but p/n EDRxxxxx will stay the same for already items in circulation (already sold).

