110W Fog Light Relay

EDR's Fog Light Relay installed in Trans Am Deport made cars

Electronic Design \& Research Inc

 Under management

VS Holding LLC

www.vsholding.com

The device is a modified 30VDC/9A relay and belongs to the family of DPST/SPDT miniature Solid-State Relays

Electronic Design \& Research http://www.vsholding.com

Technology for people's ideas

Features: Utilizes only 0.75 sq. in. of PCB area and only 1.25 " tall 9 A continuously current and no heat sink is required 40 A pulse in a miniature package Low power control input, and EMI free operation 18 A is a maximum continues current, 1% duty cycle 0.007 Ohms on-state resistance at $25^{\circ} \mathrm{C}$

Leakage typ. $1.0 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$ and $100 \mu \mathrm{~A}$ at $100^{\circ} \mathrm{C}$ at 16 V

Input Specifications:
 Input Control Voltage (pin 4)

Nominal Control Signal Current
Power Supply +Vdc (pin 5) ESD input rating

Output Specifications:

Operating voltage range

Continuous current
Maximum surge current (IDM)
Maximum current (ID), $25{ }^{\circ} \mathrm{C}$
Maximum on-state resistance
Rising time
Delay -on time
Falling time
Delay -off time
Maximum switching frequency
"Dead Time"

General Specifications:

Ambient operating temperature range $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Ambient storage temperature range $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Dielectric Strength input-to-output
Mechanical Specifications:
Weight (oz)
Encapsulation Epoxies Etc.

A sample of chopping of a bi-polar power Terminals \#2 and \#3 connected together

All Dimensions are in inches (millimeters). Dimensions for SIP6 package
Terminals/solder control/output(power)
$0.625^{\prime} \mathrm{Hx} 1.5^{\prime} \mathrm{Lx} 028^{\prime} \mathrm{W}$ 0.025 "square /.052"

Terminals T3/T4 rated at 30VDC/9A
/W must be added for terminals replaced with 12": P/N EDR82966/7/W

PIN 1: +T1 / N.O./Vcc PIN 2: -T2 / N.O.
PIN 3: +T3 / N.C.
PIN 4: -T4 / N.C.
PIN 5: +Vcs (control)
PIN 8: GND

TransientProtection:All loadsareinductive, evenonesthatarenotsoobviousorkbekd.Aninductiveloadproduresahamfiltransientvoliage, whichismuchhigherthantheapplied vollage, whenitistumedonand
 ACapplied voltage and unidirectional forDC applied voltage, houldbe usedtockampexeessies spikes

Control Voltage, pins 5 ($>1 \mathrm{~mA}$)
Power Supply (I cc) Current, Pin\#7
Power Supply (Vcc), Voltage, Pin\#7

Minimum	Nominal	Maximum	Unit
6	12	16	V
12	20	22	mA
6	12	16	VDC

Switching frequency 140 Hz , load voltage +26VDC, load is 3.0 Ohm/8.5A

FIG 1 Turn-on delay is $115.6 \mu \mathrm{~S}$

FIG 2 Turn-off delay is $119.9 \mu \mathrm{~S}$

FIG 3 Rising/Falling slopes are $74.4 \mu \mathrm{~S} / 32.3 \mu \mathrm{~S}$

FIG 4 The "dead" time is $26.2 \mu \mathrm{~S}$

FIG 5
Test Circuit for a SPDT configuration, terminals the T2 and T3 were connected together

Typical applications for SPDT/DPST and FLR-12/9 relays

Versatility of the W2L-family of SPDT/DPST relays can be appreciated viewing presented below applications

FIG 6
A low Rds/on resistance insures the best possible audio power delivery to a selected speaker.

FIG 7
A high isolation between both pair of terminals makes easy commutating DC and AC voltages interference free. The EDR83492 configured as a 1 Form A + 1 Form B (DPST) relay.

FIG 8
The EDR82966 provides a power to two Fog Bulbs.

FIG 9
The EDR82966 is a watchdog. It monitors a voltage provided by a local power source and switches to a back up battery if it fallen below requirements.

Selection and Ordering Instruction for EDR's made Solid State Modules such as Relays, Switches, Breakers, $1 / 2$ and Full-bridge Drivers, etc. Notes: During past ten years rapid development of new and additional [products gave us no choice but to expend, modify and un ify part descriptions. Below represent the third modification. Our modules description will be marked according to the specifications below but p/n EDRxxxxx will stay the same for already items in circulation (already sold).

'X'	module type
	D
	R
	W
	T
	M
	H
	C
	B
	S

Solid-State Relay or Switch with SPST -NO (normally open) output terminals
R Solid-State Relay or Switch with SPST -NC (normally closed) output terminals
W Solid-State Relay DPST/SPDT output terminals
Driver, such as $1 / 2$-bridge or a SPDT relay which can work as a $1 / 2$ driver
Full-bridge (H-bridge) Driver
Relay with built-in de-bouncing or a turn-on/off delay
S Solid State Breaker and brakes control modules
"A" package dimensions
1
0.615 "H x 1.48 "L x 0.290 "'W
1.75 "'H x $1.80^{\prime \prime} \mathrm{L} x 0.595^{\prime} \mathrm{W}$
$1.125^{\prime \prime} \mathrm{H} \times 1.75^{\prime \prime} \mathrm{L} x 0.8$ " W
$1.15^{\prime \prime} \mathrm{H} \times 2.0^{\prime \prime} \mathrm{L} x 0.92^{\prime \prime} \mathrm{W}$
$1.15^{\prime \prime} \mathrm{H}$ x $2.8^{\prime \prime} \mathrm{L} \times 1.15$ " W
DIP24, 0.375"H x $0.925^{\prime \prime} \mathrm{L} \times 0.53$ "W
panel mount, $.82{ }^{\prime \prime} \mathrm{H} \times 3.95$ " $\mathrm{L} x 1.96$ "W
$.575^{\prime \prime} \mathrm{H}$ x 1.1 "L x .2 "W
panel mount 3 " H x 10 " L x 8 " W
. 625 "H x .750 "'L x .375 "
DIN type enclosure, $2.36^{\prime \prime} \mathrm{H} \times 2.36$ " $\mathrm{L} \times 1.5$ " W , for 35 mm DIN Rail
P panel mount, .8 " $\mathrm{H} \times 2.275^{\prime \prime} \mathrm{L} \times 1.75^{\prime \prime} \mathrm{W}$
R panel mount, $1.82^{\prime \prime} \mathrm{H} \times 6.0^{\prime \prime} \mathrm{L} \times 3.3$ " W
"B", Speed - A device's ability to turn ON/OFF output terminal(s) times per second
L a low speed relay/switch, rated DC -200 Hz , direct driving control
A a low speed relay/switch, AC input relays
M a moderate speed relay, rated DC-2.5 KHz
$\mathrm{N} \quad$ a medium speed relay/switch, rated DC -25 KHz , direct driving control
G a medium speed relay/switch, rated DC -25 KHz , low current control and power
F a fast relay/switch, rated up to DC -350 KHz , low current control and power
$\mathrm{S} \quad$ a super-fast relay/switch, rated DC -1.4 MHz , low current control and power
$\mathrm{U} \quad$ a super-fast relay/switch, rated $\mathrm{DC}-1.2 \mathrm{MHz}$, direct driving control
V Fast, High Voltage Solid-State Switches with Nanoseconds rise time
"C'" Output Voltage - A maximum allowed voltage between output terminals, up to 100kV
It must be replaced with required voltage and we offer the closest and highest value available.
Note: In an "AC" -relay a voltage specified a peak-to-peak maximum voltage and the maximum VAC can be calculated by multiplying a maximum allowed voltage by factor of 0.7
"F", A relay can be use to control either AC, DC or AC/DC power
A - a relay/switch designed to switch/chop an AC/DC power
D - a relay/switch designed to switch/chop a DC power
"none" - relay with a SCR or TRIAC on the output to control only AC power
'H" A maximum allowed RMS CURRENT (Ampere) without a heat sink
We can manufacture a device for any required current.
"P" Some of our products use an internal DC/DC converter no provide a power to the internal electronics.
Varieties voltages are available: $5 \mathrm{VDC}+/-5 \%, 12 \mathrm{VDC}+/-5 \%, 24 \mathrm{VDC}+/-5 \%$ and $48 \mathrm{VDC}+/-5 \%$. For a wider input power voltage swing, please add "W" after the voltage. For an example, 24 W is for $24 \mathrm{~V}+/-12 \mathrm{~V}$.
''E'" We offer several standard control voltages 5VDC, 12VDC, 24VDC, 48VDC, 3-20VDC and 18-38VDC. Please specify the input control voltage, as for example D1L30D12/xx. Replace xx with a 3, 5, 12, 24, 48, 3-20 and 18-38 that is for 3VDC, 5VDC, 12VDC, $24 \mathrm{VDC}, 48 \mathrm{VDC}, 3-20 \mathrm{VDC}$ and $18-38 \mathrm{VDC}$. Respectful control voltage represented at the end of part number in the following way, for an example EDR82653/1 and EDR82653/8. Both relays are almost the same and difference is only an applied control voltage, " 1 " if for 3 VDC and " 8 " is for 18 38VDC;

Control Voltage	Representation	Control Voltage	Representation	Control Voltage	Representation
3 VDC	1	5 VDC	2	12 VDC	3
24VDC	4	48 VDC	5	26 VDC	6
$3-20 \mathrm{VDC}$	7	$18-38 \mathrm{VDC}$	8	$90-120 \mathrm{VAC}$	9

"'Z" A relay/switch built with following standard isolations
"L" or "none" type relay is 2500 V
"N" type relay is 3000V, 4000VDC ("H4") and 5200 ("H5") VDC.
" T " Turn-on delays; " S " for seconds, " M " for milliseconds, " U ' for microseconds, M102-100 mS turn-off delay, 102M
mS - turn-on delay

